Optimizing sparse mean reverting portfolios

نویسندگان

  • I. Róbert Sipos
  • János Levendovszky
چکیده

In this paper we investigate trading with optimal mean reverting portfolios subject to cardinality constraints. First, we identify the parameters of the underlying VAR(1) model of asset prices and then the quantities of the corresponding OrnsteinUhlenbeck (OU) process are estimated by pattern matching techniques. Portfolio optimization is performed according to two approaches: (i) maximizing the predictability by solving the generalized eigenvalue problem or (ii) maximizing the mean return. The optimization itself is carried out by stochastic search algorithms and Feed Forward Neural Networks (FFNNs). The presented solutions satisfy the cardinality constraint thus providing sparse portfolios to minimize the transaction costs and to maximize interpretability of the results. The performance has been tested on historical data (SWAP rates, SP 500, and FOREX). The proposed trading algorithms have achieved 29.57% yearly return on average, on the examined data sets. The algorithms prove to be suitable for high frequency, intraday trading as they can handle financial data up to the arrival rate of every second.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Small Mean Reverting Portfolios

Given multivariate time series, we study the problem of forming portfolios with maximum mean reversion while constraining the number of assets in these portfolios. We show that it can be formulated as a sparse canonical correlation analysis and study various algorithms to solve the corresponding sparse generalized eigenvalue problems. After discussing penalized parameter estimation procedures, ...

متن کامل

Sparse, mean reverting portfolio selection using simulated annealing

We study the problem of finding sparse, mean reverting portfolios based on multivariate historical time series. After mapping the optimal portfolio selection problem into a generalized eigenvalue problem, we propose a new optimization approach based on the use of simulated annealing. This new method ensures that the cardinality constraint is automatically satisfied in each step of the optimizat...

متن کامل

Optimal Portfolios of Mean-Reverting Instruments

In this paper we investigate portfolios consisting of instruments whose logarithms are mean-reverting. Under the assumption that portfolios are constant, we derive analytic expressions for the expected wealth and the quantile-based risk measure capital at risk. Assuming that short-selling and borrowing is allowed, we then solve the problems of global minimum capital at risk, and problem of find...

متن کامل

Optimizing Stock Portfolio of Investment Companies Operating in Field of Petrochemical and Refinery Based on Multivariate GARCH Models

The main objective of this research is to optimize the stock portfolio of investment companies operating in the field of petrochemical and refining industries through minimizing risk with respect to the expected return. In this regard, first of all, the compositions of sample firm's portfolios were investigated during 2013 to 2016 and high-weight industries were selected. Then, the risk of retu...

متن کامل

Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios

Markowitz (1952, 1959) laid down the ground-breaking work on the mean-variance analysis. Under his framework, the theoretical optimal allocation vector can be very different from the estimated one for large portfolios due to the intrinsic difficulty of estimating a vast covariance matrix and return vector. This can result in adverse performance in portfolio selected based on empirical data due ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Algorithmic Finance

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013